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Abstract Pairs of numerically satisfactory solutions as n → ∞ for the three-term
recurrence relations satisfied by the families of functions 1F1(a + ε1n; b + ε2n; z),
εi ∈ Z, are given. It is proved that minimal solutions always exist, except when
ε2 = 0 and z is in the positive or negative real axis, and that 1F1(a + ε1n; b + ε2n; z)
is minimal as n → +∞ whenever ε2 > 0. The minimal solution is identified for
any recurrence direction, that is, for any integer values of ε1 and ε2. When ε2 �= 0
the confluent limit limb→∞ 1F1(γ b; b; z) = eγ z , with γ ∈ C fixed, is the main tool
for identifying minimal solutions together with a connection formula; for ε2 = 0,
lima→+∞ 1F1(a; b; z)/0F1(; b; az) = ez/2 is the main tool to be considered.

Mathematics Subject Classification (2000) 33C15 · 39A11 · 41A60 · 65D20

1 Introduction

Linear three-term recurrence relations are useful tools for computing a larger number of
special functions, and in particular, confluent (or Kummer) hypergeometric functions.

As is well known, the Kummer function 1F1, defined by

1F1(a; b; z) =
∞∑

k=0

(a)n

(b)n

zn

n!
, (1)
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110 J. Segura, N. M. Temme

satisfies linear relations with rational coefficients connecting any three functions with
parameters differing by integer numbers.

In particular, given a family of Kummer functions

yn = 1F1(a + ε1n; b + ε2n; z) (2)

for any pair (ε1, ε2) �= (0, 0), with fixed values of εi ∈ Z, and with fixed complex
values of a, b and z, there exists a three-term recurrence relation

yn+1 + βn yn + αn yn−1 = 0, (3)

αn and βn being rational functions of an = a + ε1n, bn = b + ε2n and z. Any
of the recurrence relations, for any integer values of ε1 and ε2, can be obtained by
suitably combining linear relations connecting contiguous confluent hypergeometric
functions (see [1, Eqs. 13.4.1–13.4.6]). For example, if (ε1, ε2) = (1, 0) we have
βn = (−2an − z +bn)/an , αn = 1−bn/an ; for (ε1, ε2) = (0, 1), βn = (1−bn − z)/z,
αn = (bn − 1 − an)/z; and for the case (ε1, ε2) = (1, 1), βn = (bn − z − 1)/(anz),
αn = −1/(anz) (see [6, Chap. 4] for further details and examples). As a further explicit
example, we will consider later the recurrences (ε1, ε2) = (±1,±2).

A crucial point to be elucidated before using a linear three-term recurrence relation
(TTRR) for computing a given function is the conditioning of the computation. In
particular, when a recurrence admits a minimal (or recessive) solution fn , that is, a
solution such that

lim
n→+∞

fn

gn

= 0 (4)

for any other solution gn of the TTRR independent of fn , this fact determines that
only one of the two possible recurrence directions (increasing or decreasing n) is well
conditioned, depending on the solution that is computed. Indeed, for computing the
minimal solution, the forward recurrence (increasing n) is ill conditioned, because a
small perturbation of the initial values (say f0 and f1) will introduce a component of
a dominant solution, which will ultimately dominate for sufficiently large n. On the
contrary, the forward numerical computation of a dominant solution gn with initial
values g0 and g1, is well conditioned. Regarding computation in the backward direction
(starting with large n), the evaluation of a minimal solution fn with decreasing n is
well conditioned; contrarily, a dominant solution should never be computed in the
backward direction.

When a recurrence admits a minimal solution (unique except for a multiplicative
factor), a pair of numerically satisfactory solutions should comprise the minimal solu-
tion and a dominant solution. From such a pair, any other solution can in principle be
computed in a numerically stable way (although transitory effects are also possible [2]).

The case of Kummer recurrences contains, as particular cases, many important
functions like Hermite and Laguerre polynomials and Bessel and Coulomb functions.
However, a systematic analysis of the conditioning of Kummer recurrences in the
complex plane was not considered until recently [3], when numerically satisfactory
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Numerically satisfactory solutions of Kummer recurrence relations 111

solutions were found for the Kummer recurrences satisfied by the functions (2) with
|εi | ≤ 1. The main tools for identifying minimal and dominant solutions were Perron’s
theorem (see for instance, [6, Chap. 4]), together with uniform asymptotic estimates
for Whittaker functions [4].

In the present paper, using asymptotic estimates for fixed complex z we are able to
find the minimal solution (when it exists) for any integer values of εi , and a second
independent solution. In other words, the problem of finding numerically satisfactory
solutions for Kummer recurrences is completely solved, for all εi ∈ Z.

In the analysis, one has to consider two different asymptotic estimates: a well-
known estimate in terms of Bessel functions [8, p. 80] for the case ε2 = 0, and a
new one for the cases ε2 �= 0. In the Appendix, we give details on obtaining the new
asymptotic (and convergent) expansions corresponding to the case ε2 �= 0.

2 Pairs of satisfactory solutions when ε2 �= 0

The main two ingredients for finding the numerically satisfactory solutions are, first,
an asymptotic estimate for large parameters and, second, a connection formula.

For ε2 �= 0 the asymptotic estimate is provided by the following limit relation:

lim
b→∞ 1F1(γ b; b; z) = eγ z , (5)

γ being a fixed value. This implies that, given two sequences {an}, {bn} such that
an → ∞ and bn → ∞ with finite limit γ = limn→∞ an/bn , we can write

lim
n→∞ 1F1(an; bn; z) = eγ z . (6)

One can understand (5) as a result of taking a double confluent limit as follows:

lim
a,b→∞ 1F1(a; b; bz/a) = 0 F0(; ; z) = ez, (7)

with a fixed ratio a/b. Also, this limit reproduces the dominant behavior shown by
the uniform asymptotic expansions of Olver [7, p. 261] and Dunster [4], considered in
[3] for finding the condition of some Kummer recurrences. It is surprising, however,
that such limit relation does not appear explicitly in the literature. In the Appendix,
we provide additional details, including new asymptotic expansions of 1F1(γ b; b; z)
as b becomes large, with fixed γ ∈ C.

Regarding the analysis of the condition of the recurrences, the important point in
(6) is that the resulting limit is a well-defined bounded function of z and that, therefore

lim
n→+∞

y(1)
n+1(z)

y(1)
n (z)

= 1 (8)
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112 J. Segura, N. M. Temme

for

y(1)
n (z) = 1F1(a + ε1n; b + ε2n; z), (9)

when ε1, ε2 �= 0.
This relation also holds when ε1 = 0: we can see this from the Maclaurin series (1)

of the Kummer function, or by using

1F1(a; b; z) = ez
1F1(b − a; b;−z). (10)

Therefore, except for ε2 = 0, (8) always holds. Later, we consider separately the case
ε2 = 0.

The second main ingredient is the well-known connection formula

U (a, b, z)=
�(1 − b)

�(a + 1 − b)
1F1(a; b; z)+

�(b − 1)

�(a)
z1−b

1F1(a − b+1; 2 − b; z),

(11)

which is already used in [3] for building accompanying solutions of the recurrence
satisfied by y(1)

n (z) when |εi | ≤ 1. The U -function, when multiplied by appropriate
� factors, is a solution of the same recurrences as those for 1F1. This can be checked
explicitly by verifying that the contiguous relations between 1F1(a; b; z) and any two
functions with contiguous parameters (that is, with one or two parameters differing in
one unit) is the same; from these contiguous relations the rest of recurrences can be
built. Because of this, also the second term in the right-hand side of (11) can be used
for building solutions of the Kummer recurrences.

The U -function will not be crucial in the present analysis, because the two terms at
the right-hand side of (11) allow the construction of numerically satisfactory pairs of
solutions in all cases, except when ε2 = 0, in which case the U -function is minimal.
We recall that a pair is said to be satisfactory when the minimal solution is included
in the pair.

With this, we will show that the pair

{y(1)
n (z), y(2)

n (z)} = {1F1(an, bn, z), λnz−bn
1F1(an − bn + 1, 2 − bn, z)},

λn =
�(bn − 1)�(an − bn + 1)

�(1 − bn)�(an)
, (12)

an = a + ε1n, bn = b + ε2n,

is a satisfactory pair whenever ε2 �= 0.
As explained in [3,5], it is convenient to use the reflection formula for the gamma

function in order to avoid negative values of n. Then, it is assumed that the reflection
formula

�(λ − n) = (−1)nπ

sin(πλ)�(n + 1 − λ)
(13)
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Numerically satisfactory solutions of Kummer recurrence relations 113

is used when n appears with negative sign. The factors not depending on n can, of
course, be dropped.

Using (8), together with (12) and (13), it is a straightforward matter to check that,
as n → +∞,

y(1)
n+1(z)

y(1)
n (z)

∼ 1,
y(2)

n+1(z)

y(2)
n (z)

∼ C

(n

z

)ε2

. (14)

When ε1, ε2 �= 0, the constant C reads

C = (−1)s |ε1|−ε1 |ε2|2ε2 |ε1 − ε2|ε1−ε2 , s = 1

2
(sign(ε1) + sign(ε2)) (15)

with sign(ε) = +1 when ε ≥ 0 and sign(ε) = −1 when ε < 0. When ε1 = 0 the
same expression is valid by neglecting the factor |ε1|−ε1 .

The crucial information is the dependence on n of the ratio y(2)
n+1/y(2)

n , showing that

y(2)
n dominates over y(1)

n when ε2 > 0, which means that y(1)
n is minimal. The contrary

happens when ε2 < 0.
This holds for any recurrence relation with ε2 �= 0 provided the solutions are

defined (which, for instance, is not the case when b ∈ Z
± and n → ∓∞) and for all

z ∈ C; also, the argument breaks down for z = 0, in which case the second solution
is undefined or zero. In all these cases, the recurrence relation becomes singular in
the sense that αn becomes 0 or ∞ for some n value. Therefore, the result holds when
the recurrence is non-singular and can be applied in the corresponding recurrence
direction. That is, the result is as general as can be.

It can be easily checked that all results corresponding to ε2 �= 0 described in [3] can
be condensed in (7–10). For a further check, we consider the recurrences with ε1 = ±1
and ε2 = ±2 (abbreviated, the (±1,±2) recurrences), which have as particular cases
Bessel and Coulomb wave functions; we will test the asymptotic estimates against the
prediction of Perron’s theorem [6, Theorem. 4.6]. In this case, the recurrence relation
yn+1 + βn yn + αn yn−1 = 0 satisfied by y(1)

n = 1F1(an; bn; z) has coefficients

βn = fncn, cn = [bn(bn − z − 2) + 2zan]/(bn − 2),

αn = − fnbn,

fn = (b2
n − 1)bn/(an(bn − an)z2),

(16)

when an = a + n, bn = b + 2n (which is the (1, 2) recurrence) and

βn = cn

bn
, αn = − 1

fnbn
, (17)

when an = a − n, bn = b − 2n (the (−1,−2) recurrence).
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Therefore, for the (1, 2) recurrence, we have

βn ∼ 16n2

z2 , αn ∼ −16n2

z2 . (18)

Perron’s theorem guarantees that this recurrence relation admits a minimal solution.
Further, it provides the asymptotic estimates for the minimal, y(1)

n , and dominant
solutions y(2)

n :

y(1)
n (z)

y(1)
n−1(z)

∼ −
αn

βn

∼ 1,
y(2)

n (z)

y(2)
n−1(z)

∼ −16n2

z2 . (19)

This prediction is, indeed, consistent with (14) and (15). 1F1(a + n; b + n; z) is
indeed minimal as n → +∞ for any set of complex parameters a, b, z. In particular,
the regular Coulomb function FL is therefore minimal as L → ∞ (and also, as a
particular case, the Bessel function Jν(z), as ν → +∞).

For the (−1,−2) recurrence, we have

βn ∼ 1 , αn ∼ − z2

16n2 , (20)

and Perron’s theorem is again positive with respect to the existence of minimal solution
and provides the following asymptotic estimates for the minimal, y(2)

n , and dominant
solutions y(1)

n :

y(1)
n (z)

y(1)
n−1(z)

∼ 1,
y(2)

n (z)

y(2)
n−1(z)

∼ −βn ∼ − z2

16n2 . (21)

We see that the minimal solution exists and that it is not y(1)
n (z) = 1F1(a−n, b−2n, z)

in this case, but y(2)
n .

3 Satisfactory solutions when ε2 = 0

This case was treated in [3], and we only mention this for completeness. It is worth
observing that because of the Kummer relation (10), the functions 1F1(b − a +
ε1n; b;−z) and 1F1(a − ε1n; b; z) satisfy the same recurrence relation, and that,
hence, the recurrences (ε1, 0) and (−ε1, 0) are related.

Also, it is clear that the information for the case (1, 0) (and hence also (−1, 0))
gives also all the information for other values ε1 ∈ Z, because the recurrence direction
is the same.

For the case (1, 0) another type of confluent limit is considered, namely

lim
a→∞ 1F1(a; b; z)/0F1(; b; az) = ez/2, (22)
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Numerically satisfactory solutions of Kummer recurrence relations 115

which follows from the following relation between the 0F1 hypergeometric function
and Bessel functions. We have

0F1(; b; z) = �(b)z(1−b)/2 Ib−1(2
√

z), (23)

and the known asymptotic estimate (see [8, p. 80])

1F1(a; b; z) ∼ ez/2�(b)(az)(1−b)/2 Ib−1(2
√

az), a → ∞. (24)

Similar estimations are available for the U -function. Considering (11), we see that
when the U -function is multiplied by �(a + 1 − b), the resulting function will satisfy
the same recurrence (in the direction of varying a) as the function 1F1(a; b; z). We
have the known asymptotic behavior [8, p. 80]

�(a + 1 − b)U (a, b, z) ∼ 2(az)(1−b)/2ez/2 Kb−1(2
√

az). (25)

With this, and using the fact that the Bessel function Iν(w) (Kν(w)) is exponentially
large (small) as 
w → ∞, it is clear that the pair

{y(1)
n (z), y(2)

n (z)} = {1F1(a + n; b; z), �(a + 1 − b + n)U (a + n, b, z)} (26)

is a numerically satisfactory pair and the y(2)
n is minimal except for z at the negative real

axis for the (1, 0) recurrence and at the positive real axis for the (−1, 0) recurrence.
In these two latter cases, the pair of solutions is also satisfactory, but the functions
become oscillatory as a function of the first parameter, as can be seen from (23) to
(25), and no minimal solution exists.

Observe that this pair is also satisfactory when ε2 > 0, because we proved in that
case that y(1)

n is minimal. We summarize this in the next section.

4 Main results

We summarize the main results of this paper in the following theorem. As mentioned
before, it is assumed that the reflection formula (13) is applied when the gamma
functions acquire a negative argument.

We use the notation

an = a + ε1n, bn = b + ε2n, n, ε1, ε2 ∈ Z, a, b ∈ C. (27)

Theorem 1 (Recurrences with ε2 ≥ 0) The pair of functions

{y(1)
n , y(2)

n } = {1F1(an; bn; z), �(1 + an − bn)U (an, bn, z)} (28)

is a numerically satisfactory pair of solutions of the (ε1, ε2) three-term recurrence
relation (3) when ε2 = 0, 1, 2, . . .

123
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The solution y(1)
n is minimal for all complex z as n → +∞ if ε2 > 0. When ε2 = 0,

y(2)
n is minimal except when �z = 0 and ε1
z < 0, in which case no minimal solution

exists.

Theorem 2 (Recurrences with ε2 �= 0) The pair of functions

{y(1)
n (z), y(2)

n (z)} = {1F1(an, bn, z), λnz−bn 1F1(an − bn + 1, 2 − bn, z)},
λn = �(bn − 1)�(an − bn + 1)

�(1 − bn)�(an)
,

(29)

constitutes a pair of numerically satisfactory solutions whenever ε2 �= 0.
The solution y(1)

n is minimal when ε2 > 0 and y(2)
n is minimal when ε2 < 0. This

holds for all complex values of z.

Appendix: Two expansions for 1F1(a; b, z) as b → ∞ with a/b fixed

A first glance at the limit (5) suggests that it can be understood from the power series
definition of the Kummer function given in (1). If both a and b tend to infinity with
γ = a/b fixed, we observe, given

lim
b→∞

(γ b)k

(b)k

→ γ k, (30)

that then (5) holds term by term. A better way to confirm this result is by building
asymptotic series as b becomes large, as we are doing now in two different ways: by
using the differential equation and by using integral representations.

An expansion obtained from the differential equation

The starting point is Kummer’s differential equation

zy′′ + (b − z)y′ − ay = 0. (31)

Now, because we expect that the limit (5) holds we write

y = eγ zw (32)

where γ = a/b, and then it is straightforward to verify that w satisfies the following
differential equation

− z[w′′ + (2γ − 1)w′ + γ (γ − 1)w] = bw′. (33)
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Numerically satisfactory solutions of Kummer recurrence relations 117

Now, we write the formal series

w(z) =
∞∑

k=0

Ak(z)b
−k, (34)

with A0 = 1, as corresponds with the fact that 1F1(b; b; z) = exp(z). Then equating
equal powers of b we find that the rest of the coefficients can be obtained recursively
by means of the relation

Ak+1(z) = −
z∫

0

x
[
A′′

k (x) + (2γ − 1)A′
k(x) + γ (γ − 1)Ak(x)

]
dx . (35)

For instance, the expansion with three terms reads:

1 F1(γ b; b; z) ∼ Eγ,b(z) = eγ z

[
1+γ (γ −1)

z2

2b

(
−1+ φ(z)

12b

)
+ O(b−3)

]
,

φ(z) = 3γ (γ − 1)z2 + 8(2γ − 1)z + 12.

(36)

Clearly, for fixed z and γ the coefficients Ak(z) are bounded. In addition, the
expansion Eγ,b(z) satisfies Eγ,b(0) = 1, E ′

γ,b(0) = γ = a/b, as corresponds to the
solution 1F1 of the differential equation.

In addition the derivatives at z = 0 of the expansion up to order O(b−n) at z = 0
coincide up to O(b−n) with the derivatives of 1 F1(γ b; b; z). This is not surprising,
since we have applied the differential equation term by term in the asymptotic series.

Observe that the expansion is exact for γ = 0 or γ = 1, because all the coefficients
except A0 appear multiplied by the factor γ (γ − 1) and, obviously 1F1(b; b; z) = ez

and 1F1(0; b; z) = 1, b �= 0.
The above analysis can be supported by the proofs for more general cases given in

[7, Chap. 10]. The expansion (34) holds for large complex b, uniformly with respect to
bounded z, γ = a/b ∈ C. No restriction has been considered when building the series.
A more direct verification of the validity of such series, and therefore of the limit (5),
is obtained by considering a related expansion obtained from integral representations.
We recall that the limit (5) when γ ∈ R is the only ingredient used in analyzing the
conditioning of the recurrences.

An expansion obtained from integrals

Consider the integral representation (see [9, p. 105])

1 F1(a; b; z) = �(b)�(1 + a − b)

2π i �(a)

(1+)∫

0

ezt ta−1(t − 1)b−a−1 dt, (37)
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118 J. Segura, N. M. Temme

where 
a > 0 and b−a /∈ N. The contour starts and terminates at t = 0, and encircles
the point t = 1 in the anti-clockwise direction.

Again we write a = γ b, and we expand at t = γ , the saddle point of ta(t − 1)b−a ,

ezt = eγ z
∞∑

n=0

zn

n! (t − γ )n, (38)

and substitute this expansion into (37). This gives the expansion

1 F1(a; b; z) = eγ z
∞∑

n=0

zn

n! 
n, (39)

where


n = �(b)�(1 + a − b)

2π i �(a)

(1+)∫

0

ta−1(t − 1)b−a−1(t − γ )n dt. (40)

We can write 
n in terms of the Gauss hypergeometric function:


n = (−γ )n
2 F1(−n, a; b; 1/γ ), (41)

as follows from the representation of the Gauss function (see [9, p. 111]):

2 F1(a, b; c; z) = �(c)�(1 + b − c)

2π i �(b)

(1+)∫

0

tb−1(t − 1)c−b−1(1 − t z)−a dt, (42)

where 
b > 0. From the recurrence relation satisfied by Gauss functions, we see that


n = n − 1

b + n − 1
(γ (1 − γ )
n−2 + (1 − 2γ )
n−1) , n = 2, 3, . . . , (43)

with 
0 = 1, 
1 = 0. It is easily verified that all 
n , n ≥ 2, vanish when γ = 0 or
γ = 1.

The expansion in (39) has an asymptotic character for large b, with z and γ bounded.
This follows from the estimate


n = O
(

b−
(n+1)/2�) , b → ∞, (44)

which can be proved by using (43) and mathematical induction. On the other hand, the
expansion is convergent. This can be easily seen by using the ratio test and considering
that 
n+1/
n is bounded as n → +∞.

Taking into account the ranges of parameters for which the integral representations
are valid, we conclude that (39) is an asymptotic (and convergent) expansion as b →
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∞, with γ, z bounded complex numbers, and b − a /∈ N. The restriction b − a /∈ N

can be eliminated by using the well-known integral representation

1 F1(a; b; z) = �(b)

�(a)�(b − a)

1∫

0

ezt ta−1(1 − t)b−a−1 dt, (45)

valid for 
b > 
a > 0 and proceeding similarly as before. The same expansion is
obtained starting from this representation for which the restriction b − a /∈ N is not
present.

Observe that the relation (10) is preserved in expansion (39). We have

1F1(γ b; b; z) = ez
1F1((1 − γ )b; b;−z) = eze(γ−1)z

∞∑

n=0

(−z)n

n!

̃n


̃n = (1 − γ )n
2F1(−n, (1 − γ )b; b; 1/(1 − γ )) = (−1)n
n .

(46)

The expansion in (39) can be seen as convergent expansion in the complex domains
of the parameters b and γ , and the expansion constitutes an analytic function with
respect to these parameters. The left-hand side of (39) is also an analytic function
of these parameters, with the usual exception for b = 0,−1,−2, . . ., and analytic
continuation can be used to extend the domain of convergence for all fixed complex γ

and complex b �= 0,−1,−2, . . ., with as extra property the asymptotic nature of the
expansion as b → ∞.
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